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A theoretical model for the shock stand-off
distance in frozen and equilibrium flows
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In the literature it was recently reported that for hypersonic reactive flow the shock
stand-off distance depends not only on a reaction rate parameter, but also on the
density ratio between shock and body. This is confirmed in this paper by a theoretical
approach which is based on the governing conservation equations. Reasonable simpli-
fications are introduced which for the frozen and equilibrium case allow an analytical
solution for the stand-off distance on spheres. The solution method is restricted to
this area since only the stand-off distance at the stagnation point is of interest. The
excellent agreement achieved for the frozen or non-reactive case with well-known so-
lutions gives evidence for the correctness of the solution method. For the equilibrium
case the solution obtained shows the same behaviour as a recent study which agrees
with experimental results and numerical simulations.

1. Introduction
The shock stand-off distance on simple bodies like spheres in hypersonic flow is the

subject of numerous papers and the basic physical mechanisms related to this problem
are quite well understood. The stand-off distance is used very often as one parameter
to validate numerical methods, especially in the case of high-enthalpy reactive flows.
Since for high Mach number flows on spheres the shock stand-off distance is much
smaller than the body radius, its experimental determination is difficult and large
errors have to be accepted. Therefore theoretical methods to determine the shock
stand-off distance are of great importance not only for validation purposes but also
to give more insight into the governing physical phenomena, especially for the reactive
flow case. The fact that the oncoming mass flow entering the shock has to leave the
flow field between shock and body is very often used to estimate the shock stand-off
distance and in some sense it is part of all theoretical methods.

For the non-reactive case Van Dyke (1958) gave a numerical solution for the shock
stand-off distance depending on the free-stream Mach number or density ratio across
the shock. Today this solution is accepted and has been proven by many of numerical
and experimental results. Extensive experiments in a ballistic range facility have been
performed by Lobb (1964) who measured the shock stand-off distance on spheres by
schlieren photography and compared his results with Van Dyke’s numerical solution,
which can be approximated quite well by (Lobb 1964)

∆fr

D
= 0.41

ρ∞
ρs
, (1.1)

with ∆ being the stand-off distance, D the sphere diameter and ρs the density
immediately behind the shock.
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For a non-equilibrium dissociating nitrogen flow Hornung (1972) calculated the
shock stand-off distance on spheres and circular cylinders using two different methods.
The results of both methods showed a correlation of the stand-off distance with the
reaction rate parameter

Ω =

(
dα

dt

)
s

D

2u∞
, (1.2)

where (dα/dt)s is the gradient of the dissociation fraction just behind the shock.
Hornung improved the correlation by introducing the non-dimensionalized stand-off
distance

∆̃ =
∆

D

ρs

ρ∞
, (1.3)

which is also used in this paper. As expected, the results showed that with increasing
reaction rate parameter the stand-off distance decreases, because the density behind
the shock becomes larger.

Recently, Wen & Hornung (1995) extended previous results by an approximate
theory which relates the dimensionless shock stand-off distance to a modified reaction
rate parameter of the form

Ω̃s =

(
dρ

dt

)
s

D

ρsu∞
. (1.4)

This approximate theory assumes linear density profiles between the shock and the
body, where the density increases from its frozen value immediately behind the shock
up to its value at the body. When the reaction rate is sufficiently large to achieve
equilibrium between the shock and the body, the density is assumed to be constant
from this point up to the body. This density profile determines an averaged value ρav
which then is related to the shock stand-off distance by (Wen & Hornung 1995)

∆̃ =
ρs

ρav
L, (1.5)

where L = 0.41 is the value from (1.1) for spheres given by Van Dyke’s solution. This
value corresponds to the non-dimensionalized shock stand-off distance for frozen flow
and has to be prescribed. It is important to note that by this approximate theory
Wen & Hornung could show that the stand-off distance not only depends on the
reaction rate parameter but also on the density ratio between shock and body. This
was not found in the previous solutions. On the other hand the density ratio between
shock and body depends on the total enthalpy of the flow. The influence of the total
enthalpy was confirmed by comparison with numerical and experimental results. The
excellent agreement achieved validates the inspired approach of Wen & Hornung
which, in a mathematical and physical sense, is very simple.

The aim of this work is to develop a method to determine the shock stand-off
distance by means as simple as possible, too, but based on the solution of the
governing conservation equations. The continuity equation is integrated along radial
rays φ = const. The momentum equations are replaced by an approximation for the
radial and tangential velocity components. The energy equation enters the problem
through the fact that for steady, inviscid and adiabatic flows the total enthalpy is
conserved. An ideal dissociating Lighthill gas is assumed. Recombination reactions
are neglected, because the region close to the body where recombination becomes
significant is a very thin layer which for overall flow field studies can be neglected
(Hornung 1976). In this case the equilibrium flow definition implies a complete
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dissociation with α = 1. The density jump across the shock is determined by frozen
flow conditions. For equilibrium conditions with infinite reaction rate behind the
shock the density jumps from its frozen value to the equilibrium one which depends
on the total enthalpy of the flow. The adiabatic compression of the flow between
shock and body in the stagnation region is neglected, because for high-enthalpy,
high-Mach-number flow its influence is negligible on the overall flow features.

In this work only the shock stand-off distance for the stagnation streamline is of
interest. Previous methods are capable of determining the whole or at least a large part
of the overall blunt-body flow field which then also yields the shock stand-off distance
as one part of the solution. Here, an attempt was made to reduce the mathematical
effort and to find an analytical solution for the stand-off distance. Therefore, the flow
field considered is restricted to an area close to the stagnation streamline which is
described as function of a radial vector and the azimuthal angle φ. Based on this, an
analytical solution is found for the shock stand-off distance on spheres for frozen and
equilibrium flow. For frozen flow conditions the solution given agrees excellently with
Van Dyke’s solution. The deviation is only 2.4%. But for equilibrium flow the theory
presented shows a strong dependence of the shock stand-off distance on the density
ratio between shock and body or the total enthalpy of the flow. The shock stand-off
distances determined by this theory agree well with those given by the approximate
approach of Wen & Hornung. The deviation is of the order of only 2%.

2. Theoretical model for the stand-off distance
The basic equations entering the problem are the continuity and the energy equa-

tion; the first is written in polar coordinates defined in figure 1:

∂

∂r
(ρvrη) +

∂

∂φ
(ρuη) = 0. (2.1)

A Lighthill ideal dissociating gas is considered (Lighthill 1957) with the specific
enthalpy given by

h = (4 + α)RT + αRΘd, (2.2)

α being the dissociation fraction and Θd the characteristic temperature of the disso-
ciation. It turns out that the velocity gradient in the circumferential direction is of
major importance for this problem. Along the stagnation streamline its value changes
approximately by a factor of 2. Just behind the shock (index s) it can be determined
from the conserved tangential velocity component across the shock:(

du

dφ

)
s

= u∞ cosφ. (2.3)

At the stagnation point of the body (index b) the tangential velocity gradient is
assumed to be given by the Newtonian approximation(

du

dφ

)
b

=

√
2(pb − p∞)

ρb
. (2.4)

A rough estimation of the pressure at the body can be taken to be ρ∞u2∞. For an
incompressible flow along the stagnation streamline, i.e. ρb = ρs, and for air with
ρs/ρ∞ = 6 (2.3) and (2.4) yield that the velocity gradient at the shock is nearly twice
that at the body. To account for this, for the simplified stagnation flow model a linear
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Figure 1. Schematic stagnation flow and notation.

distribution of the tangential velocity gradient is assumed between shock and body.
The equations are non-dimensionalized by

p̄ =
p

pb
, ρ̄ =

ρ

ρb
, ū =

u

u∞
, v̄ =

v

u∞
, h̄ =

h

h0

, T =
T

Tref

,

Θ̄d =
Θd

Tref

, r̄ =
2r

D
, ∆̄ =

2∆

D
,

with

h0 = RTref =
u2∞
2
.

Integrating the continuity equation (2.1) along a ray φ = const leads to

ρ̄sv̄s(1 + ∆̄)2 sinφ+

∫ 1+∆̄

1

∂

∂φ
(ρ̄ūr̄ sinφ)dr̄ = 0. (2.5)

In the following only the flow region very close to the stagnation streamline is
considered. For this, the following usual approximations are introduced:

sinφ ≈ φ, ū = φ
∂ū

∂φ
,

∂ρ̄

∂φ
= 0. (2.6)

The variation of the tangential velocity gradient along the stagnation streamline is
approximated by a linear profile

∂ū

∂φ
=

(
∂ū

∂φ

)
b

+

[
1−

(
∂ū

∂φ

)
b

]
r∗

with the normalized coordinate

r∗ =
r̄ − 1

∆̄
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ranging from 0 (body) to 1 (shock). For this the continuity equation (2.5) yields

ρ̄sv̄s(1 + ∆̄)2 + 2∆̄

∫ 1

0

ρ̄(1 + ∆̄r∗)
[(

∂ū

∂φ

)
b

(1− r∗) + r∗
]

dr∗ = 0. (2.7)

It is important to note that under the assumptions made for the stagnation region,
in (2.5) the dependence on the azimuthal angle φ drops out. This allows a solution
to be found for the stagnation streamline given in (2.7). This is the basic formula to
determine the shock stand-off distance. Up to this point no gas model has been used,
so that (2.7) is valid for all gas compositions. Chemical or thermal relaxation processes
enter through the density distribution between shock and body and the tangential
velocity gradient, which is also influenced by relaxation processes. To determine the
velocity gradient at the body (2.4) is rewritten as(

∂ū

∂φ

)
b

=

√
pb

ρbh0

, (2.8)

where p∞ is neglected compared to the stagnation pressure pb at the body. This
simplification holds for all hypersonic flows.

From the equation of state

pb

ρb
= (1 + αb)RTb

and (2.2) it follows that

pb

ρbh0

=
1 + αb

4 + αb
(1− αbΘ̄d). (2.9)

To make the set of equations consistent, the non-dimensionalized characteristic tem-
perature of the dissociation Θ̄d is not free to be chosen, because it is related to the
total enthalpy of the flow which has to fulfil energy conservation. To determine Θ̄d

first, it is necessary to derive an expression for the density distribution between shock
and body. For this the energy equation is used in the form

h̄+ ū2 + v̄2 = 1. (2.10)

In the neighbourhood of the stagnation streamline the term ū2 is at second order small
and therefore negligible. It is assumed that the radial velocity component v̄ linearly
decreases from its value v̄s behind the shock to zero at the stagnation point. This,
together with the prescribed tangential velocity gradient profile and (2.6), determines
the two velocity components u and v, which replace the two momentum equations in
the governing set of equations.

From (2.10) together with

v̄ = −
(
ρ∞
ρs

)
r∗

and the equation of state, the density distribution follows as

ρ̄ =

(
4 + α

1 + α

)(
p̄

1− Θ̄dα− (ρ∞/ρs)2r∗2

)
pb

ρbh0

. (2.11)

To solve this equation the pressure distribution has to be known. But as is known
for hypersonic flow conditions the pressure variation along the stagnation streamline
is not very large even for non-equilibrium flows (e.g. Hornung 1972). In this simple
flow model therefore the influence of the pressure variation as well as that of the
radial velocity component are neglected. The error introduced by this simplification



350 H. Olivier

is minimized, because in (2.11) the absence of the pressure and velocity terms affects
the nominator and denominator in the same way and by roughly the same amount.

Since across the shock the flow is chemically frozen and for the free stream no
dissociation is assumed, the density behind the shock is given by

ρ̄s =
4(1 + αb)(1− αbΘ̄d)

4 + αb
.

For a fully equilibrium flow with αb = 1 this yields

ρs

ρb,e
=

8

5
(1− Θ̄d) (2.12)

or

Θ̄d = 1− 5

8

ρs

ρb,e
. (2.13)

The assumptions mentioned above lead to ρ̄ = 1 for both fully frozen and equilibrium
flow, which means that there is no density change between the shock and the body
along the stagnation streamline. In this case (2.7) can be solved very easily which
yields a quadratic equation for the stand-off distance

∆̄2

[
ρ̄sv̄s +

1

3

(
∂ū

∂φ

)
b

+
2

3

]
+ ∆̄

[
2ρ̄sv̄s +

(
∂ū

∂φ

)
b

+ 1

]
+ ρ̄sv̄s = 0 (2.14)

with solution

∆̃ =
∆̄

2

ρs

ρ∞
=

{
ρs

ρ∞

√
1

4

[
1 +

(
∂ū

∂φ

)
b

]2

− 1

3

ρs

ρb

ρ∞
ρs

[
1 + 2

(
∂ū

∂φ

)
b

]

−1

2

[
1 +

(
∂ū

∂φ

)
b

]
ρs

ρ∞
+
ρs

ρb

}(
4

3
+

2

3

(
∂ū

∂φ

)
b

− 2
ρs

ρb

ρ∞
ρs

)−1

. (2.15)

For frozen flow the density ratio ρs/ρb is set equal to 1. With that and for air with
ρ∞/ρs = 1/6 equation (2.15) gives a stand-off distance of

∆̃ = 0.4,

which agrees very well with the value ∆̃ = 0.41 first given by Van Dyke and which
has been approved by numerous experiments (e.g. Lobb 1964). The value for the
tangential velocity gradient follows from (2.8) and (2.9). The small difference of 2.4%
between the two values can be attributed to the simplified stagnation flow model of
this approach. It is interesting to note that for nitrogen and the frozen case Hornung
(1972) determined a value for the shock stand-off distance of ∆̃ = 0.39 which is also
slightly less than given by van Dyke’s solution. For the ideal dissociating gas with
ρ∞/ρs = 1/7 the shock stand-off distance from (2.15) is found to be ∆̃ = 0.39 which
is smaller than for air with ρ∞/ρs = 1/6 due to the larger density ratio across the
shock.

Equation (2.15) implies that for the non-dimensional shock stand-off distance ∆̃ for
the frozen or non-reactive case there is still a weak dependence on the density ratio
ρ∞/ρs across the shock or on the gas itself. According to (2.15), e.g. for CO2 and
M∞ → ∞ with ρ∞/ρs = 1/7.67, for frozen flow the non-dimensional shock stand-off
distance is ∆̃ = 0.38, which is slightly smaller than that for air. For an atomic gas
with γ = 5/3 according to (2.15) ∆̃ = 0.44 which is a deviation of 7.3% from the
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ρs/ρb,e 0.4 0.5 0.6 0.7 0.8 0.9

∆̃ this theory (2.15) 0.164 0.203 0.241 0.280 0.319 0.359
∆̃ Wen & Hornung (2.19) 0.164 0.205 0.246 0.287 0.328 0.369

Table 1. Shock stand-off distance for equilibrium flow, ρ∞/ρs = 1/6.

value 0.41 for frozen air flow. Therefore, it is obvious that the factor L in (1.5) not
only depends on the geometry but also on the gas properties.

The situation becomes more complex for equilibrium flow. It is assumed that across
the shock the flow is chemically frozen (Freeman 1958). Owing to the infinite reaction
rate immediately behind the shock the density jumps to the value at the body. That
means that the density ρs just behind the shock is fixed by the free stream and frozen
flow behaviour. But in this case within the shock layer the density additionally depends
on the total enthalpy of the flow. This becomes obvious from (2.12), rewritten as

ρb,e =
5

8

h0

h0 − RΘd

ρs, (2.16)

where ρb,e is the density at the body for equilibrium flow which in this case is equal
to that within the shock layer. Since for fully equilibrium flow the density within the
shock layer can be varied by changing the total enthalpy, in this case the shock stand-
off distance depends on the parameter ρs/ρb,e. This is obvious from (2.15), which for
equilibrium flow is the same as for frozen flow but with the following substitutions:

ρs

ρb
=

ρs

ρb,e
(2.17)

and (
∂ū

∂φ

)
b

=

√
pb

ρbh0

=
1

2

√
ρs

ρb,e
. (2.18)

The dependence of the shock stand-off distance on the density ratio ρs/ρb,e was first
derived by Wen & Hornung (1995), who assumed a linear density profile within the
shock layer. From this, the average density within the shock layer is determined and
is related to the shock stand-off distance. For infinite reaction rate the result of Wen
& Hornung is given by

∆̃ = ∆̃frozen

ρs

ρb,e
, (2.19)

which directly shows that, as expected, the shock stand-off distance decreases with
increasing density within the shock layer. A comparison of the shock stand-off dis-
tance calculated by (2.15) with the values achieved by Wen & Hornung is given in
table 1, where in (2.19) ∆̃frozen was set to the value 0.41.

The agreement achieved is excellent, the largest difference between the results of
the two methods is only of the order of 2% to 3%, which on a first look is surprising,
because the two approaches start from different models. Whereas Wen & Hornung
assumed the density distribution and related the shock stand-off distance to the
average density, the theory presented in this paper is based on the conservation
equations which are solved by using suitable simplifications which have no strong
influence on the basic physics of the problem. As already stated above, (2.15) shows
that besides the density ratio across the shock layer the shock stand-off distance also
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Figure 2. Shock stand-off distance for equilibrium flow: ◦, this theory, equation (2.15),
ρ∞/ρs = 1/6; �; Wen & Hornung, equation (2.19).

depends on the tangential velocity gradient, because this determines the mass flow
rate out off the stagnation region. It is interesting to note that according to (2.18)
for equilibrium flow the tangential velocity gradient depends on the density ratio
ρs/ρb,e, i.e. both the density and velocity field are influenced by high-temperature
effects in the stagnation region. This shows that to determine the shock stand-off
distance the density as well as the velocity field have to be taken into account. In
the approach described by (2.19) the dependence of the velocity field is taken into
account by the constant factor ∆̃frozen = L = 0.41, because this value results from
numerical simulations of a non-reacting flow field around a sphere. It does not take
into account the influence of high-temperature effects on the velocity field, as given by
(2.18) of this theory, nor the dependence of the non-dimensionalized shock stand-off
distance ∆̃ on different gas compositions, even for the frozen case. This also shows
the different approaches of the two methods.

In figure 2 the non-dimensional stand-off distance is presented as function of the
density ratio ρs/ρb,e for equilibrium flow. It is obvious that the linear dependence in
(2.19) agrees quite well with the result of the theory presented in this paper. In figure
3, taken from Wen & Hornung, the limiting values for frozen and equilibrium flow
obtained by this theory are indicated.

3. Conclusions
A theoretical model has been developed to determine the shock stand-off distance

on axisymmetric blunt bodies for frozen and equilibrium flows. No use is made of
previous results like Van Dyke’s solution for blunt-body flows. The restriction of the
flow field considered to an area close to the axis and the use of suitable simplifications
allow an analytical solution for the shock stand-off distance. The solution for the
frozen case agrees very well with the well-known solution of Van Dyke. For larger
reaction rates and the limiting case of equilibrium flow Wen & Hornung’s result,



Theoretical model for shock stand-off distance 353

Ω

∆

0.5

0.4

0.3

0.2

0.1

0

~

~
10–2 10–1 100 101 102

0.4

0.5

0.6

0.7

0.8

ρs/ρb,e = 0.9 Limiting
values

Figure 3. Shock stand-off distance as function of reaction rate parameter (Wen & Hornung) and
limiting values for frozen and equilibrium flow according to this theory, equation (2.15), ρ∞/ρs = 1/6.

showing the dependence of the shock stand-off distance on the density ratio between
shock and body, is confirmed and very good agreement is achieved. It becomes
obvious in the theory presented that in addition to the density the tangential velocity
gradient is also of great importance for the stand-off distance, since like the density
it determines the mass flow rate leaving the stagnation region. The theory shows that
the influence of the velocity field on the stand-off distance depends on the density
ratio between shock and body. For equilibrium flow the magnitude of this ratio is
determined by the total enthalpy of the flow.
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